Authors
- Nouh RebouhCentre de Recherche en Aménagement de Territoire (CRAT), Campus Zouaghi Slimane, Route de Ain el Bey, 25000 Constantine, Algérie
- Faicel ToutCentre de Recherche en Aménagement de Territoire (CRAT), Campus Zouaghi Slimane, Route de Ain el Bey, 25000 Constantine, Algérie
- Haythem DinarCentre de Recherche en Aménagement de Territoire (CRAT), Campus Zouaghi Slimane, Route de Ain el Bey, 25000 Constantine, Algérie
- Yacine BenzidCentre de Recherche en Aménagement de Territoire (CRAT), Campus Zouaghi Slimane, Route de Ain el Bey, 25000 Constantine, Algérie
- Zakaria ZouakCentre de Recherche en Aménagement de Territoire (CRAT), Campus Zouaghi Slimane, Route de Ain el Bey, 25000 Constantine, Algérie
DOI:
https://doi.org/10.18485/ijdrm.2024.6.2.16
Keywords:
flood susceptibility, geographic information system (GIS), analytical hierarchy process (AHP), google earth engine (GEE), Ain Smara
Abstract
Mapping flood susceptibility is essential for identifying flood-prone areas and informing flood risk management strategies. This study applies a multi-criteria decision-making approach to assess flood vulnerability in Ain Smara and its surrounding areas in Constantine, Algeria, which are highly susceptible to flooding. The analysis combines the Analytical Hierarchy Process (AHP), Geographic Information System (GIS), Remote Sensing (RS), and the Google Earth Engine (GEE) platform. Ten key flood-related criteria were selected, including the Topographic Wetness Index, Elevation, Slope, Precipitation, Land Cover/Land Use, Normalized Difference Vegetation Index (NDVI), Distance from Rivers, Distance from Roads, Drainage Density, and Lithology, along with more than 25 sub-criteria. A pairwise comparison matrix (PCM) was used to assign relative importance to each criterion based on its impact on flood susceptibility. The Topographic Wetness Index was identified as the most significant criterion, while Distance from Roads was deemed the least significant. The results reveal that approximately 4.00% of the area is classified as having high to very high flood susceptibility, particularly near the Rhumel River. Roughly 30% of the area has low to very low susceptibility, and the remaining 66% is categorised as moderately susceptible to flooding. Notably, most of the identified flood-prone zones correspond with areas that experienced flooding events in 2019, 2020, and 2021, predominantly within 1,000 meters of river courses. These findings demonstrate the GIS-AHP technique’s effectiveness in generating reliable flood susceptibility maps, especially when numerous criteria are considered.
References
Abedi, R., Costache, R., Shafizadeh-Moghadam, H., Pham, Q.B. (2021). Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto Int 1–18
Akay, H. (2021). Flood hazards susceptibility mapping using statistical, fuzzy logic, and MCDM methods. Soft Comput 1–22
Aktar, M. A., Shohani, K., Hasan, M. N., & Hasan, M. K. (2021). Flood vulnerability assessment by flood vulnerability index (FVI) method: a study on Sirajganj Sadar Upazila. International Journal of Disaster Risk Management, 3(1), 1-14.
Aleksova, B., Milevski, I., Dragićević, S., & Lukić, T. (2024). GIS-based integrated multi-hazard vulnerability assessment in Makedonska Kamenica municipality, North Macedonia. Atmosphere, 15(7), 774.
Al-Juaidi, A.E., Nassar, A.M., Al-Juaidi, O.E. (2018). Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors. Arab J Geosci 11(24):1–10
Arabameri, A., Saha, S., Chen, W., Roy, J., Pradhan, B., Bui, D.T. (2020). Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. J Hydrol 587:125007
Azareh, A., RafieiSardooi, E., Choubin, B., Barkhori, S., Shahdadi, A., Adamowski, J., Shamshirband, S. (2019). Incorporating multi-criteria decision-making and fuzzy-value functions for flood susceptibility assessment. Geocarto Int 1–21
Benabbas, C. (2006). Évolution Mio-Plio-Quaternaire des bassins continentaux de l’Algérie nord orientale: apport de la photogéologie et analyse morpho structurale. Grands travaux d’aménagement et mouvements de versant dans la région nord de Constantine (Algérie Nord–Orientale). Doctorat d’état, Constantine, 245p.
Bouamrane, A., Derdous, O., Dahri, N., Tachi, S.E., Boutebba, K., Bouziane, M.T. (2020). A comparison of the analytical hierarchy process and the fuzzy logic approach for flood susceptibility mapping in a semiarid ungauged basin (Biskra basin: Algeria). Int J River Basin Manag 1–11
Bui, D.T., Ngo, P.T.T., Pham, T.D., Jaafari, A., Minh, N.Q., Hoa, P.V., Samui, P. (2019). A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. CATENA 179:184–196
Cao, Y., Jia, H., Xiong, J., Cheng, W., Li, K, Pang, Q., Yong, Z. (2020). Flashflood susceptibility assessment based on geodetector, certainty factor, and logistic regression analyses in Fujian Province China. ISPRS Int J GeoInf 9(12):748
Chadi, M. (1991). Géologie des monts d’Ain m’lila (Algérie orientale) (Doctoral dissertation, Université Henri Poincaré-Nancy 1).
Chakraborty, S., Mukhopadhyay, S. (2019). Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Cooch Behar district of West Bengal India. Nat Hazards 99(1):247–274
Chen, C.Y., Yu, F.C. ( 2011). Morphometric analysis of debris flows and their source areas using GIS. Geomorphology 129, 387–397.
Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, H., Ahmad, B.B. (2020). Modelling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods. Sci Total Environ 701:134979
Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-Hosseini, F., Mosavi, A. (2019). An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci. Total Environ. 651, 2087–2096.
Choudhury, S., Basak, A., Biswas, S., Das, J. (2022). Flash flood susceptibility mapping using GIS-based AHP method. In Spatial modelling of flood risk and flood hazards: Societal implications (pp. 119-142). Cham: Springer International Publishing.
Chowdhuri, I., Pal, S.C., Chakrabortty, R. (2020). Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Adv Space Res 65 (5):1466–1489
Costache, R., Pham, Q.B., Sharifi, E., Linh, N.T.T., Abba, S.I., Vojtek, M., Khoi, D.N. (2019). Flash-flood susceptibility assessment using multi-criteria decision-making and machine learning supported by remote sensing and gis techniques. Remote Sens 12(1):106
Cvetkovic, V. M., & Martinović, J. (2020). Innovative solutions for flood risk management. International Journal of Disaster Risk Management, 2(2), 71-100.
Dahri, N., Abida, H. (2017). Monte Carlo simulation-aided analytical hierarchy process (AHP) for flood susceptibility mapping in Gabes Basin (south-eastern Tunisia). Environ Earth Sci 76(7):302
Das, S. (2020). Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sensing Applications: Society and Environment, 20, 100379.
Das, S. (2019a). Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India. Rem. Sens. Appl. Soc. Environ. 14, 60–74.
Das, S. (2020). Landscape Variables in the Indian (Peninsular) Catchments: Insights into Hydro-Geomorphic Evolution. https://doi.org/10.31223/osf.io/hbsq2.
Das, S, Gupta, A. (2021). Multi-criteria decision-based geospatial mapping of flood susceptibility and temporal hydro-geomorphic changes in the Subarnarekha basin, India. Geosci Front 12(5):101206
Das, S., Pardeshi, S.D. (2018b). Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: a study of Pravara basin, Maharashtra, India. Appl. Water Sci. 8 (7), 197.
Derouiche, A. (2008). Contribution de la géophysique et de la photo interprétation à l’étude de l’instabilité de terrains dans la région de Constantine, Thèse de magister, Univ de Constantine 140p,.
Falah, F., Rahmati, O., Rostami, M., Ahmadisharaf, E., Daliakopoulos, I.N., Pourghasemi, H.R. (2019). Artificial neural networks for flood susceptibility mapping in data-scarce urban areas. In: Spatial modelling in GIS and R for earth and environmental sciences, pp 323– 336. Elsevier
Hammami, S., Zouhri, L., Souissi, D., Souei, A., Zghibi, A., Marzougui, A., Dlala, M. (2019). Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arab J Geosci 12(21):1–16
Handfield, R., Walton, S.V., Sroufe, R., Melnyk, S.A. 2002. Applying environmental criteria to supplier assessment: a study in the application of the analytical hierarchy process, 141, 70–87.
Haque, M.N., Siddika, S., Sresto, M.A., Saroar, M.M., Shabab, K.R. (2021). Geo-spatial analysis forflashflood susceptibility mapping in the North-East Haor (Wetland) Region in Bangladesh. Earth Syst Environ 1–20
Hitouri, S., Mohajane, M., Lahsaini, M., Ali, S. A., Setargie, T. A., Tripathi, G., … & Varasano, A. (2024). Flood susceptibility mapping using SAR data and machine learning algorithms in a small watershed in northwestern Morocco. Remote Sensing, 16(5), 858.
Hong, H., Panahi, M., Shirzadi, A., Ma, T., Liu, J., Zhu, A.X., Chen, W., Kougias, I., Kazakis, N. (2018). Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci. Total Environ. 621, 1124–1141.
Iftikhar, A., & Iqbal, J. (2024). Changes in Lulc and Drainage Network Patterns the Cause of Urban Flooding in Karachi City. International Journal of Disaster Risk Management, 6(1), 91-102.
Jemai, S., Belkendil, A., Kallel, A., & Ayadi, I. (2024). Assessment of flood risk using Hierarchical Analysis Process method and Remote Sensing systems through arid catchment in southeastern Tunisia. Journal of Arid Environments, 222, 105150.
Joshi, M.M., Shahapure, S.S. (2020). Flood susceptibility mapping for part of Bhima River basin using a twodimensional HEC-RAS model. In: Techno-societal 2018, pp 595–605. Springer, Cham
Kanani-Sadat, Y., Arabsheibani, R., Karimipour, F., Nasseri, M. (2019). A new approach toflood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi-criteria decision-making method. J Hydrol 572:17–31
Khaddari, A., Bouziani, M., Moussa, K., Sammar, C., Chakiri, S., Hadi, H.E., Jari, A., Titafi, A. (2022). Evaluation of Precipitation Spatial Interpolation Techniques using GIS for Better Prevention of Extreme Events: Case of the Assaka Watershed (Southern Morocco). Eco. Env. & Cons, 28, 1–10.
Khaddari, A., Jari, A., Chakiri, S., El Hadi, H., Labriki, A., Hajaj, S., … & Abioui, M. (2023). A comparative analysis of analytical hierarchy process and fuzzy logic modeling in flood susceptibility mapping in the Assaka Watershed, Morocco. Journal of Ecological Engineering, 24(8), 62-83.
Khosravi, K., Pham, B.T., Chapi, K., Shirzadi, A., Shahabi, H., Revhaug, I., Bui, D.T. (2018). A comparative assessment of decision trees algorithms for flashflood susceptibility modeling at Haraz watershed, northern Iran. Sci Total Environ 627:744–755
Khosravi, K., Pourghasemi, H.R., Chapi, K., Bahri, M. (2016b). Flashflood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon’s entropy, statistical index, and weighting factor models. Environ Monit Assess 188 (12):1–21
Khosravi, K., Shahabi, H., Pham, B.T., Adamowski, J., Shirzadi, A., Pradhan, B., Prakash, I. (2019). A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. J Hydrol 573:311–323
Kia, M.B., Pirasteh, S., Pradhan, B., Mahmud, A.R., Sulaiman, W.N.A., Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin Malaysia. Environ. Earth Sci. 67 (1), 251–264
Kiani, M., Bagheri, M., Ebrahimi, A., Alimohammadlou, M. (2019). A model for prioritising outsourceable activities in universities through an integrated fuzzyMCDM method. Int J Constr Manag 1–17
Kourgialas, N.N., Karatzas, G. (2011). Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrological Sciences Journal–Journal des Sciences Hydrologiques 56(2):212–225
Lee, S., Kim, J.C., Jung, H.S., Lee, M.J., Lee, S. (2017). Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomat Nat Hazards Risk 8(2):1185–1203
Lin, K., Chen, H., Xu, C.Y., Yan, P., Lan, T., Liu, Z., Dong, C. (2020). Assessment of flash flood risk based on improved analytic hierarchy process method and integrated maximum likelihood clustering algorithm. J Hydrol 584:124696
Malik, S., Pal, S.C. (2021). Potential flood frequency analysis and susceptibility mapping using CMIP5 of MIROC5 and HEC-RAS model: a case study of lower Dwarkeswar River, Eastern India, S.N. App Sci 3 (1):1–22
Marengo, J.A., Camarinha, P.I., Alves, L.M., Diniz, F., Betts, R.A. (2021). Extreme rainfall and hydrogeo-meteorological disaster risk in 1.5, 2.0, and 4.0° C global warming scenarios: an analysis for Brazil. Frontiers in Climate, 3, 610433.
Milevski, I., Aleksova, B., Lukić, T., Dragićević, S., & Valjarević, A. (2024). Multi-hazard modeling of erosion and landslide susceptibility at the national scale in the example of North Macedonia. Open Geosciences, 16(1), 20220718
Mirzaei, S., Vafakhah, M., Pradhan, B., Alavi, S.J. (2021). Flood susceptibility assessment using extreme gradient boosting (EGB) Iran. Earth Sci Inform 14(1):51– 67
Nachappa, T.G., Piralilou, S.T., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., Blaschke, T. (2020). Flood susceptibility mapping with machine learning, multicriteria decision analysis and ensemble using Dempster Shafer theory. J Hydrol 125275
Ngo, P.T.T., Pham, T.D., Nhu, V.H., Le, T.T., Tran, D.A., Phan, D.C., Bui, D.T. (2021). A novel hybrid quantumPSO and credal decision tree ensemble for tropical cyclone induced flash flood susceptibility mapping with geospatial data. J Hydrol 596:125682
Ogden, F.L., Raj Pradhan, N., Downer, C.W., Zahner, J.A. (2011). Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resour. Res. 47 (12).
Oikonomidis, D., Dimogianni, S., Kazakis, N., Voudouris, K. (2015). A GIS/ remote sensing based methodology for groundwater potentiality assessment in Tirnavos area, Greece. Journal of Hydrology 525: 197–208
Papagiannaki, K., Lagouvardos, K., Kotroni, V., Bezes, A. (2015). Flash flood occurrence and relation to the rainfall hazard in a highly urbanized area. Nat Hazard 15(8):1859–1871
Pappenberger, F., Matgen, P., Beven, K.J., Henry, J.B., Pfister. L. (2006). Influence of uncertain boundary conditions and model structure onflood inundation predictions. Adv Water Resour 29(10):1430–1449
Perić, J., & Cvetković, V. M. (2019). Demographic, socio-economic and phycological perspective of risk perception from disasters caused by floods: case study Belgrade. International Journal of Disaster Risk Management, 1(2), 31-45.
Pham. B,T., Avand, M., Janizadeh, S., Phong, T.V., Al-Ansari, N., Ho, L.S., Prakash, I. (2020). GIS-based hybrid computational approaches for flashflood susceptibility assessment. Water 12(3):683
Pradhan, B. (2009). Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J. Spatial Hydrol. 9, 1–18.
Prasad, P., Loveson, V.J., Das, B., Kotha, M. (2021). Novel ensemble machine learning models inflood susceptibility mapping. Geocarto Int 1–23
Predick, K.I., Turner, M.G. (2007). Landscape configuration and flood frequency influence invasive shrubs in floodplain forests of the Wisconsin River (USA). J. Ecol. 96 (1), 91–102.
Rahmati, O., Pourghasemi, H.R., Zeinivand, H. (2016). Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province Iran. Geocarto Int 31(1):42–70
Ramesh, V., Iqbal, S.S. (2020). Urbanflood susceptibility zonation mapping using evidential belief function, frequency ratio and fuzzy gamma operator models in GIS: a case study of Greater Mumbai, Maharashtra, India. Geocarto Int 1–26
RazaviTermeh, S.V., Pourghasemi, H.R., Alidadganfard, F. (2018). Flood inundation susceptibility mapping using analytical hierarchy process (AHP) and TOPSIS decision-making methods and weight of evidence statistical model (case study: jahrom township, fars province). J Watershed Manag Res 9(17):67–81
Rebouh, N., Khiari, A. (2022). La Cinématique et l’organisation des structures géologiques dans le Constantinois.
Rebouh, N., Oudni, A., Khiari, A., & Özgür, N. (2024). Mapping of Landslide Susceptibility Using Analytical Hierarchy Process (AHP) in the Ain Smara and its Surrounding Areas, Algeria (Northeastern of Algeria). Studies in Science of Science| ISSN: 1003-2053, 42(8), 1-15.
Rebouh, N., Oudni, A., Khiari, A., Benabbas, C., Özgür, N. (2021). Hydrothermal alteration mapping and structural features in the Ain Smara basin, Constantine (Northeastern Algeria): contribution of Landsat OLI8 data. AJGS, 14, 1-19.
Saaty, T.L. (1977). A scaling method for priorities in hierarchical structures.Journal of Mathematical Psychology15:59–62
Saaty, T.L. (1980). A scaling method for priorities in hierarchical structures.Journal of Mathematical Psychology15: 234–281
Sahana, M., Patel, P.P. (2019). A comparison of frequency ratio and fuzzy logic models for flood susceptibility assessment of the lower Kosi River Basin in India. Environ Earth Sci 78(10):1–27
Saharia, M., Kirstetter, P.E., Vergara, H., Gourley, J.J., Hong, Y., Giroud, M. (2017). Mappingflashflood severity in the United States. J Hydrometeorol 18(2):397–411
Samanta, R.K., Bhunia, G.S., Shit P.K., Pourghasemi, H.R. (2018). Flood susceptibility mapping using geospatial frequency ratio technique: a case study of Subarnarekha River Basin India. Model Earth Syst Environ 4 (1):395–408
Samanta S., Koloa C., Kumar Pal D., Palsamanta B. (2016), Flood risk analysis in lower part of Markham river based on multi-criteria decision approach (MCDA). Hydrology 29. https://doi.org/10.3390/hydrology3030029.
ShafapourTehrany, M., Kumar, L., NeamahJebur, M., Shabani, F. (2019). Evaluating the application of the statistical index method inflood susceptibility mapping and its comparison with frequency ratio and logistic regression methods. Geomat Nat Hazards Risk 10(1):79–101
Siahkamari, S., Haghizadeh, A., Zeinivand, H., Tahmasebipour, N., Rahmati, O. (2018). Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto Int 33(9):927–941
Souissi, D., Zouhri, L., Hammami, S., Msaddek, M.H., Zghibi, A., Dlala, M. (2020). GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, south-eastern Tunisia. Geocarto Int 35(9):991–1017
Svoboda, A. (1991). Changes in flood regime by use of the modified curve number method. Hydrol Sci J 36(5):461–470
Swain, K.C., Singha, C., Nayak, L. (2020). Flood susceptibility mapping through the GIS-AHP technique using the cloud. ISPRS International Journal of Geo-Information, 9(12), 720.
Tehrany, M.S., Pradhan, B., Jebur, M.N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol 512:332–343
Tehrany, M.S., Pradhan, B., Jebur, M.N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 512, 332–343.
Tekeli, A.E., Fouli, H. (2016). Evaluation of TRMM satellite-based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia. J Hydrol 541:471–479
Termeh, S. V. R., Kornejady, A., Pourghasemi, H. R., & Keesstra, S. (2018). Flood susceptibility mapping using novel ensembles of adaptive neuro-fuzzy inference system and metaheuristic algorithms. Science of the Total Environment, 615, 438-451.
Terti, G., Ruin, I., Anquetin, S., Gourley, J.J. (2015). Dynamic vulnerability factors for impact-based flash flood prediction. Nat Hazards 79(3):1481–1497
Tout, F. (2023). Flood policy in Algeria. International Journal of Disaster Risk Management, 5(1), 27-39.
Vafakhah, M., Mohammad Hasani Loor, S., Pourghasemi, H., Katebikord, A. (2020). Comparing the performance of random forest and adaptive neuro-fuzzy inference system data mining models for flood susceptibility mapping Arab J Geosci 13:1–16
Vignesh, K.S., Ananda kumar, I., Ranjan, R., Borah, D. (2021). Flood vulnerability assessment using an integrated approach of multi-criteria decision-making model and geospatial techniques. Model Earth Syst Environ 7 (2):767–781
Vila, JM. (1980). La chaîne alpine de l’Algérie orientale et des confins algéro-tunisiens. Thèse de Doctorat-es-sciences, Université Pierre et Marie curie.
Wang, Y., Hong, H., Chen, W., Li, S., Pamučar, D., Gigović, L., Duan, H. (2019a). A hybrid GIS multi-criteria decisionmaking method for flood susceptibility mapping at Shangyou China. Remote Sens 11(1):62
Yalcin, A., Reis, S., Cagdasoglu, A., Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchical process, bivariate statistics and logistic regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85, 274–287.
Yang, Q., Guan, M., Peng, Y., Chen, H. (2020). Numerical investigation of flashflood dynamics due to cascading failures of natural landslide dams. Eng Geol 276:105765
Youssef, A., Pradhan, B., Sefry, S. (2016). Flashflood susceptibility assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environ Earth Sci 75:1–16
Downloads
Published
2024-12-25
How to Cite
Rebouh, N., Tout, F., Dinar, H., Benzid, Y., & Zouak, Z. (2024). Integrating Multi-Source Geospatial Data and AHP for Flood Susceptibility Mapping in Ain Smara, Constantine, Algeria. International Journal of Disaster Risk Management, 6(2), 245–264. https://doi.org/10.18485/ijdrm.2024.6.2.16More Citation Formats
Issue
Vol. 6 No. 2 (2024): International Journal of Disaster Risk Management (IJDRM)
Section
Articles
License
Copyright (c) 2024 International Journal of Disaster Risk Management
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
International Journal of Disaster Risk Management (IJDRM) allows authors to deposit publisher’s version/PDF in an institutional repository, research gate, Academia.edu, and non-commercial subject-based repositories, or to publish it on Author’s personal website (including social networking sites) and/or departmental website, at any time after publication in compliance with the Creative Commons Attribution-NonCommercial – NoDerrivatives 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/). The Publisher’s copyright and source must be acknowledged and a link must be made to the article’s DOI (HTML link).
Most read articles by the same author(s)
- Faicel Tout, Flood policy in Algeria , International Journal of Disaster Risk Management: Vol. 5 No. 1 (2023): International Journal of Disaster Risk Management (IJDRM)
- Faicel Tout, Nouh Rebouh, Haythem Dinar, Yacine Benzid, Zakaria Zouak, The Contribution of Roads to Forest Fire Protection in Tamza Municipality, Northeast Algeria , International Journal of Disaster Risk Management: Vol. 6 No. 2 (2024): International Journal of Disaster Risk Management (IJDRM)